Question Paper Name: Subject Name:

Aerospace Engineering 11th May 2017 Shift 1

Aerospace Engineering

Duration:

120

Aerospace Engineering

Display Number Panel:

Yes No

Group All Questions:

Question Number: 1 Question Id: 8711121 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

If A is a square matrix of order n, then |2A| is

Options:

13

$$2^{n-1}|\Delta|$$

2 - - 12

0

Question Number: 2 Question Id: 8711122 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The value of p for which the equations 2x + 3y = 0, 6x + py = 0 can have non trivial solution is

ierr

Options:

, 3

2

(

11

$$\tan^{-1}(y/x)$$

$$\frac{1}{2} \tan^{-1}(y/x)$$

$$\frac{1}{4} \tan^{-1}(y/x)$$

Question Number: 4 Question Id: 8711124 Display Question Number: Yes Single Line Question Option: No Option Orientation:

If R is the region bounded by the closed curve C, then the area of R is given by

Options:

$$\frac{1}{2} \oint (x dy - y dx)$$

$$\frac{1}{2}$$
 \oint (ydx + xdy)

$$\frac{1}{2}$$
 \oint $(xdx + ydy)$

$$\oint (ydx - xdy)$$

Question Number: 5 Question Id: 8711125 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The divergence of the vector field F= xy

Options:

Question Number: 6 Question Id: 8711126 Display Question Number: Yes Single Line Question Option: No Option Orientation:

The Laplace Transform of sin²(2t) is

2/(s(s+4))

 $2s/(s^2+4)$

 $2/(s(s^2+4))$

ique

Question Number: 7 Question Id: 8711127 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The complementary function of the differential equation $x^2y'' - xy' + y = \log x$ is

Options:

$$y = (c_1 + c_2 \log x)x$$

 $y = c_1 + c_2 x$

$$y = (c_1 + c_2 x) \log x$$

$$y = c_1 + c_2 \log x$$

UPI

Question Number: 8 Question Id: 8711128 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The equation $x^6 - x - I = 0$ has

Options:

1.

Exactly three positive real roots

Exactly two positive real roots BAIL COM

Exactly one positive real root

No positive real root

Question Number: 9 Question Id: 8711129 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

I(X) -1 1 2 3

By Trapezoidal rule, $\int_3^{12} f(x) dx =$

Options:

- 60
- 2
- 10
- 12

Question Number: 10 Question Id: 87111210 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The second approximate solution of $\frac{dy}{dx} = y + x$, y(0) = 1 by Picard's process is

Options:

$$1 + x + x^2/2 + x^3/3$$

$$1 + x + x^2/2 + x^3/6$$

$$1 + x + x^2 + x^3/6$$

$$1 + x + x^2 + x^3$$

Question Number: 11 Question Id: 87111211 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The typical mean temperature ____ with increasing altitude in the troposphere.

Options:

- decreases
- increases
- remains constant
- decreases and then increases

Question Number: 12 Question Id: 87111212 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Wide extended horizontal sheet of clouds typically found below 2 km altitude are known as

Cirrus clouds Stratocumulus clouds Question Number: 13 Question Id: 87111213 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical The boundary between troposphere and stratosphere is known as **Options:** Tropopause Stratopause 2. Mesopause Exosphere Question Number: 14 Question Id: 87111214 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical** The first subsonic commercial aircraft to incorporate a fly by wire system was **Options:** Airbus 320 Boeing 747 JPIQPBANK.COM Cessna caravan Question Number: 15 Question Id: 87111215 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical** Short range aircrafts have range less than **Options:** 500 km 1000 km

Cumulus ciouas

Question Number: 16 Question Id: 87111216 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

A moment of 100 kg-m/s is imparted to a projectile over a duration of 0.05 s. What is the force provided to the projectile?

Options:

- 4000 N
- 2000 N
- ₂ 5000 N
- 4. 3000 N

Question Number: 17 Question Id: 87111217 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

For an aircraft having a wing span b and standard mean chord c, the aspect ratio of the aircraft is

Options:

- , b²/c
 - b/c
- b
- c/b

UPIQPBANK.COM

Question Number: 18 Question Id: 87111218 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Which of the following is false for steady level flight?

- T = D
- L = W
- $\gamma = 0$
- $\alpha = 0$

The C_L for minimum thrust or drag for an aircraft in steady level flight is

Options:

$$\sqrt{\frac{\kappa}{c_{D0}}}$$

$$\frac{2K}{C_{D0}}$$

$$\sqrt{\frac{C_{D0}}{K}}$$

$$\sqrt{\frac{K}{2C_{D0}}}$$

UPI

Question Number: 20 Question Id: 87111220 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The total drag for an aircraft in steady level flight when the drag is minimum is

Options:

1

$$qSC_{D0}$$

2 66

 $3qSC_{D0}$

4qSC_{D0}

UPIQPBANK.COM

Question Number: 21 Question Id: 87111221 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

During gliding flight of an aircraft,

$$\frac{L}{D} = \sin \gamma$$

$$\frac{L}{D} = \cos \gamma$$

$$\frac{L}{D} = \cot \gamma$$

Question Number: 22 Question Id: 87111222 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical**

The sink rate of a glider is the

Options:

- Vertical component of velocity
- Horizontal component of velocity
- Rate of change of vertical velocity
- Rate of change of horizontal velocity

Question Number: 23 Question Id: 87111223 Display Question Number: Yes Single Line Question Option: No Option **Orientation**: Vertical

At constant angle of attack, the drag of an aircraft is

Options:

3.

4.

- directly proportional to square root of load factor
- inversely proportional to square root of load factor
 - inversely proportional to load factor
- directly proportional to load factor

Question Number: 24 Question Id: 87111224 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical**

NK.COM

The zero-lift drag coefficient of typical aircrafts is in the range

- (2.5)

(-0.03, -0.01)

Question Number: 25 Question Id: 87111225 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Which of the following cannot be determined using a pibal?

Options:

2.

- Direction of wind
 - Speed of wind
- Height of cloud
 - Relative humidity

4.

For an airfoil, the net aerodynamic force acts at the

Options:

1.

2.

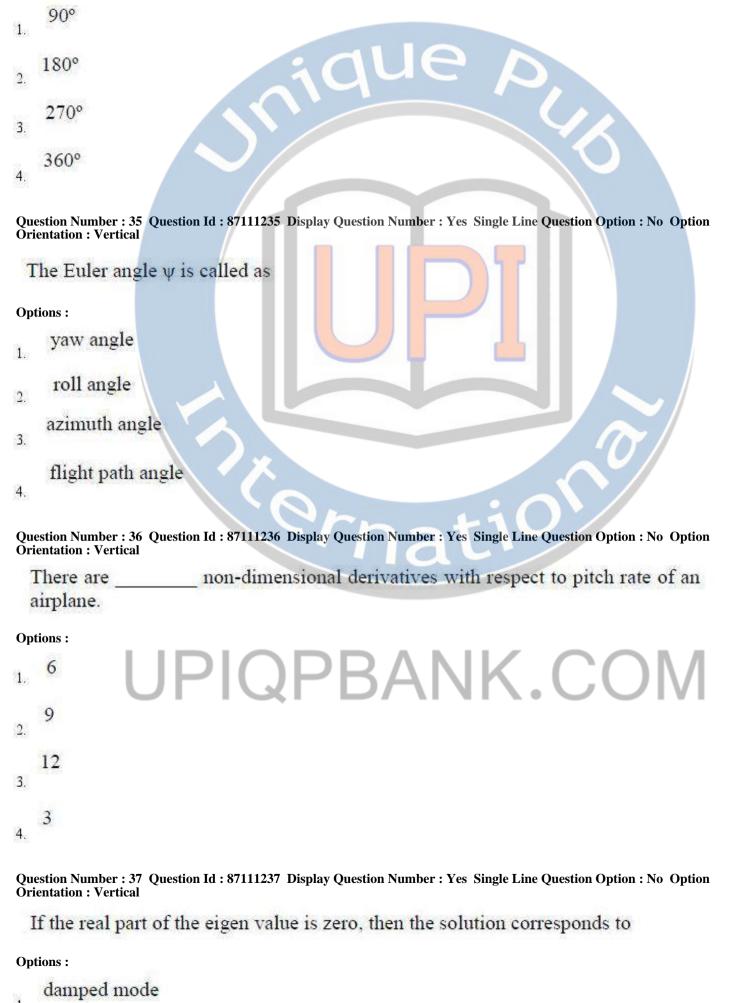
4.

- center of pressure
- aerodynamic center
- quarter-chord point

mid-chord point PIQPBANK.COM

Question Number: 27 Question Id: 87111227 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The tendency of an aircraft to converge to the initial equilibrium condition following a small disturbance from equilibrium is referred to as


Options:

- Static stability
- Dynamic stability
- Trim

Question Number: 28 Question Id: 87111228 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical contributes significantly to lateral static stability of an aircraft. **Options:** Wing sweep 1. Aspect ratio Wing dihedral Fins Question Number: 29 Question Id: 87111229 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical** The damped oscillation in vaw which couples into roll and sideslip is known as **Options:** Cerr Dutch roll 1. Phugoid 2. Roll subsidence mode Spiral mode Question Number: 30 Question Id: 87111230 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical** The sum of the forces on an aircraft along the wind X_s-axis is (T = Thrust, W = Weight, L = Lift, D = Drag, α = angle of attack, γ = climb angle) **Options:** $T\cos\alpha - D - W\cos\gamma$ 1. $T \sin \alpha - D - W \cos \gamma$ 2 $T\cos\alpha - D - W\sin\gamma$ 3. $T \sin \alpha - D - W \sin \gamma$

The mertial havigation system works on the basis of
Options:
Magnetism 1.
Gyroscopic principle 2.
Atmospheric pressure variation with altitude
Location of sun 4.
Question Number: 32 Question Id: 87111232 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
The minimum airspeed required for a vertical loop does not depend on
Options:
Airspeed lost in the first half of the maneuver
Radius of the loop
Minimum airspeed required for control
Stability margin of the aircraft 4.
Question Number: 33 Question Id: 87111233 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
In a stall turn, the acrobatic aircraft uses to turn about the axis normal to the aircraft.
Options:
Aileron 1.
Rudder 2.
Flap 3.
Elevator 4.

 $Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$

Question Number: 38 Question Id: 87111238 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical**

Spiral mode of an airplane is

Options:

- slowly convergent
- highly convergent
- slowly damped oscillatory mode
- highly damped oscillatory mode

Question Number: 39 Question Id: 87111239 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical**

For steady level flight, the velocity (V) is related to wing loading (W/S) as

Options:

$$\sqrt{\frac{2}{\rho C_L}} \frac{W}{S}$$

$$\sqrt{\frac{\rho C_L}{2} \frac{W}{S}}$$

$$\frac{2}{\rho C_L} \frac{W}{S}$$

$$\frac{\rho C_L}{2} \frac{W}{S}$$

Question Number: 40 Question Id: 87111240 Display Question Number: Yes Single Line Question Option: No Option

UPIQPBANK.COM

The power required for steady level flight of an aircraft is

Options:

$$\frac{1}{2}\rho V^{3}SC_{D0} + \frac{KW^{2}}{\frac{1}{2}\rho VS}$$

 $\frac{1}{2}\rho V^2 SC_{D0} + \frac{KW}{\frac{1}{2}\rho V}$

$$\frac{1}{2}\rho V^2 SC_{D0} + \frac{KW^2}{\frac{1}{2}\rho VS}$$

4

Question Number: 41 Question Id: 87111241 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The dynamic pressure for minimum power requirement for an aircraft in steady level flight is

Options:

$$\frac{s}{w}\sqrt{\frac{3K}{c_{Do}}}$$

$$\frac{W}{S}\sqrt{\frac{K}{3C_{D0}}}$$

$$\frac{S}{W}\sqrt{\frac{3}{KC_{D0}}}$$

$$\frac{W}{S}\sqrt{\frac{1}{3KC_{D0}}}$$

4

Question Number: 42 Question Id: 87111242 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The induced drag at the condition of minimum power requirement for an aircraft in steady level flight is ____ that of zero-lift drag.

- equal to
- twice
- thrice
- 3.
- half

Options: 0.25 1. 0.50 0.751.00 **Orientation**: Vertical The CL for an aircraft flying at minimum power is

Question Number: 44 Question Id: 87111244 Display Question Number: Yes Single Line Question Option: No Option

% more than that for the aircraft flying at minimum thrust under steady level flight condition.

Options:

41

50

73

3.

100

Question Number: 45 Question Id: 87111245 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical**

The first space program in which people and equipment were send to moon was

Options:

Gemini

Mercury

Apollo

Saturn

Question Number: 46 Question Id: 87111246 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical**

Options: Perigee 1. Apogee Center of the ellipse 3. Focus of the ellipse Ouestion Number: 47 Ouestion Id: 87111247 Display Ouestion Number: Yes Single Line Ouestion Option: No Option **Orientation**: Vertical The radius of the earth is approximately **Options:** 3370 km 4720 km 5720 km 6370 km Question Number: 48 Question Id: 87111248 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical** If mass of the earth is ME, radius of the earth is RE and 'G' is universal gravitation constant, then the acceleration due to gravity is represented as JPIQPBANK.COM **Options:** GME 1. GM_E R_E 2 GM_E RE

Question Number: 49 Question Id: 87111249 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

3.

GRE ME

Options: 60 kg

12 kg

2.

300 kg

3.

65 kg

4.

Question Number: 50 Question Id: 87111250 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

A satellite will travel in a circular orbit of radius r around earth if the normal component of acceleration is _____ (g is the acceleration due to gravity on the earth's surface and R is the radius of earth).

Options:

$$g \frac{R^2}{r^2}$$

 $\sigma^{\frac{r^2}{2}}$

g

 $g\frac{R^3}{r^3}$

UPIQPBANK.COM

Question Number: 51 Question Id: 87111251 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

For a satellite moving in an elliptic orbit around earth, the maximum speed will be at the point

Options:

1.

2.

3

farthest from the earth

on the semi-minor axis

on the ellipse making 1350 with the apogee

Question Number: 52 Question Id: 87111252 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

For an unpowered space vehicle, at the closest point the velocity of the vehicle is less than that for a parabolic trajectory, then the trajectory has the shape of

Options:

Ellipse

Straight line

2.

Parabola

3.

Hyperbola

4.

Question Number: 53 Question Id: 87111253 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

enna

The trajectory of an unpowered space vehicle around earth is

Options:

a spiral

1.

an ellipsoid

a conic section

3.

4.

a cardioid UPIQPBANK.COM

Question Number: 54 Question Id: 87111254 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Which of the following statements about communications satellite is wrong?

Options:

Communication satellites are placed in a geosynchronous orbit

They move in a circular orbit

2.

The time period of the satellite is approximately 24 hours

Question Number: 55 Question Id: 87111255 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical** Dynamic pressure is defined as **Options:** $\rho_{\infty}c_{\infty}$ 1. $\rho_{\infty}V_{\infty}$ Question Number: 56 Question Id: 87111256 Display Question Number: Yes Single Line Question Option: No Option **Orientation**: Vertical The SI unit of the coefficient of viscosity is **Options:** 1. UPIQPBANK.COM 3. 4. Question Number: 57 Question Id: 87111257 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical** The tangent to _____ gives the direction of flow at that point.

Path line

Options:

Vortex line

Stream line

Question Number: 58 Question Id: 87111258 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical**

For inviscid, incompressible flows, the superposition of a uniform flow with a source is equivalent to

Options:

flow over a Rankine oval

1.

flow over a cylinder

flow past flat plate

3.

flow over a semi-infinite body

4

Question Number: 59 Question Id: 87111259 Display Question Number: Yes Single Line Question Option: No Option **Orientation**: Vertical

For the inviscid, incompressible flow past a sphere, the maximum velocity reached on the surface of the sphere is

Options:

$$\frac{3}{2}V_{0}$$

UPIQPBANK.COM

 $2V_{\infty}$

Question Number: 60 Question Id: 87111260 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

At low Reynolds number the flow in the boundary layer tends to be

Static 3. laminar Question Number: 61 Question Id: 87111261 Display Question Number: Yes Single Line Question Option: No Option **Orientation**: Vertical For the flow in a boundary layer, the thickness at which the axial velocity approaches 0.99 times the free stream velocity is known as **Options:** Boundary layer thickness Displacement thickness Momentum thickness 3. Shape factor 4. Question Number: 62 Question Id: 87111262 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical** For a laminar boundary layer past a flat plate, the boundary layer thickness grows in the downstream direction. PBANK.COM **Options:** linearly parabolically elliptically exponentially Question Number: 63 Question Id: 87111263 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical** The direction of aerodynamic lift is

Inviscid

Perpendicular to freestream velocity 2. Parallel to fuselage datum 3. Parallel to side slip velocity Question Number: 64 Question Id: 87111264 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical** The stalling velocity of an aircraft is determined by **Options:** dCL CD $C_{L_{max}}$ Question Number: 65 Question Id: 87111265 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical** The design lift coefficient for NACA 23012 airfoil is K.COM **Options:** 0.1 1 0.3 3.

Question Number : 66 Question Id : 87111266 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

. 7

 $\pi/2$

. 37

27

Question Number: 67 Question Id: 87111267 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Aerodynamic center is defined as the point about which

Options:

- the moment is zero
- the moment is independent of angle of attack
- the pressure is zero
- the flow separates

Question Number: 68 Question Id: 87111268 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

According to the Kutta-Joukowski theorem the lift is written as

Options:

$$Q_{\infty}V_{\infty}\Gamma$$

UPIQPBANK.COM

$$Q_{\infty}V_{\infty}\Gamma/2$$

$$\varrho_{\infty}V_{\infty}^{2}\Gamma$$

$$\frac{1}{2} \, \varrho_{\infty} V_{\infty}^2 \Gamma$$

Question Number : 69 Question Id : 87111269 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

The magnitude of the pitching moment about the quarter chord point for a NACA 0012 airfoil _____.

increases beyond stall

becomes zero at stall

remains constant beyond stall

2

3.

Question Number: 70 Question Id: 87111270 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical**

The Blasius solution for an incompressible, laminar boundary layer predicts the boundary layer thickness to be

Options:

$$\delta = \frac{5}{\sqrt{Re_x}}$$

$$\delta = \frac{5x}{\sqrt{2Re_x}}$$

$$\delta = \frac{5x}{\sqrt{Re_x}}$$

Question Number: 71 Question Id: 87111271 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical**

The two dimensional stagnation point flow is known as

Options:

1.

2.

3.

Couette flow

Poiseuille flow

Hiemenz flow

Stokes flow

Options

the waves propagating from a body moving at supersonic speeds

the waves emanating from a sharp corner in supersonic flow

the waves emanating from an open jet

two dimensional growing waves in the early linear phase of laminar to turbulent transition

4.

2.

Question Number: 73 Question Id: 87111273 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The friction velocity in a turbulent boundary layer is defined as

Options:

$$\frac{\tau_{W}}{\rho}$$

$$\frac{\rho}{\tau_{w}}$$

$$\sqrt{\frac{\tau_w}{\rho}}$$

P

3.

UPIQPBANK.COM

Question Number: 74 Question Id: 87111274 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

At the point of boundary layer separation_____

Options:

1.

2

Shear stress is maximum

Shear stress is zero

Velocity is negative

Question Number: 75 Question Id: 87111275 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

In a boundary layer the flow is

Options:

3.

Irrotational and viscous

rotational and inviscid

rotational and viscous

irrotational and inviscid

4.

Question Number: 76 Question Id: 87111276 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

In a boundary layer developed along the flow, if the pressure decreases along the downstream then the boundary layer thickness

Options:

- remains same
 - decreases more rapidly
- decreases gradually

increases gradually

QPBANK.COM

Question Number: 77 Question Id: 87111277 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The specific internal energy of a gas is related to its specific enthalpy as

Options:

1.

$$h = e + pv$$

h = o = nv

h = e - pv

h = 2e + pv

Question Number: 78 Question Id: 87111278 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical**

When a supersonic flow is turned away from itself. is formed

Options:

- a shock wave
 - an expansion wave
- a slip line
- - a vortex sheet

Question Number: 79 Question Id: 87111279 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical**

The speed of sound at standard sea level is

Options:

1

- 300 m/s
- 340 m/s
- JPIQPBANK.COM
- 430 m/s

Question Number: 80 Question Id: 87111280 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical**

In a convergent-divergent nozzle, when the flow goes sonic at the throat, it is called

Options:

Choked flow

Fanno flow Question Number: 81 Question Id: 87111281 Display Question Number: Yes Single Line Question Option: No Option **Orientation**: Vertical The purpose of a diffuser is to **Options:** Decrease the pressure of flow Increase the temperature of flow Decrease the velocity of the flow Increase the stagnation temperature of the flow Question Number: 82 Question Id: 87111282 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical** A process in which entropy remains constant is known as **Options:** Isothermal process 1. IQPBANK.COM Adiabatic process Isobaric process 3. Isentropic process Question Number: 83 Question Id: 87111283 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Which of the following statements is true?

Options:

Stokes flow

Internal energy is an extensive property

Both pressure and internal energy are extensive properties

Neither pressure nor internal energy are extensive properties

Question Number: 84 Question Id: 87111284 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The true air speed (v) is related to the equivalent air speed (v_E) as, (where ρ is the freestream density and ρ_0 is the density at the standard sea level international standard atmosphere value)

Options:

1.

2.

$$v = v_E \sqrt{\frac{\rho}{\rho_0}}$$

$$v = v_E \sqrt{\frac{\rho_0}{\rho}}$$

$$v = v_E \frac{\rho}{\rho_0}$$

Question Number: 85 Question Id: 87111285 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Rayleigh's supersonic pitot tube equation relates the

Options:

3.

- stagnation temperature behind a shock to the static temperature ahead of the shock
- static pressure behind a shock to the static pressure ahead of the shock
- stagnation pressure behind a shock to the stagnation pressure ahead of the shock
 - stagnation pressure behind a shock to the static pressure ahead of the shock

PIV stand for
Options:
Particle Interference Velocimetry
Particle Image Velocimetry 2.
Particle induced vibrations
3
Phase Interference Velocimetry 4.
Question Number: 87 Question Id: 87111287 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
Which of the following is not an objective of flight testing?
Options:
Determine actual characteristics of aircraft
Determine the skills of the pilot
Provide developmental information 3.
Provide research information
4:
Question Number: 88 Question Id: 87111288 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
Which of the following is not a factor for the flight test planning?
Options:
Safety 1.
Cost 2.
Schedule 3.
FAR approval

in a supersome which times, now follows the following sequence **Options:** nozzle-test section-diffuser diffuser-test section-nozzle test section-diffuser-nozzle test section-nozzle-diffuser Question Number: 90 Question Id: 87111290 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical** Which of the following type of error is not significant in pitot-static systems? **Options:** position error 1 Instrument error 2 Parallax error 3. Pressure lag error Question Number: 91 Question Id: 87111291 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical** NK.COM On the principal planes of stress, the shear stress is **Options:** Maximum value Minimum value Zero Positive

Question Number : 92 Question Id : 87111292 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Ellipse 1. Hyperbola Concentric circles Parabola 4. Question Number: 93 Question Id: 87111293 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical** The ratio of effective length of a fixed-fixed column to its actual length is **Options:** 2.0 1. 1.0 0.5 3. 0.6998 Question Number: 94 Question Id: 87111294 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical** The main structural elements of the wing of an aircraft are **Options:** Ribs 1. Spars

Options:

Stringers

Bulkhead

Options: Young's modulus 1. Modulus of rigidity 2 Tangent Modulus 3. Secant Modulus Question Number: 96 Question Id: 87111296 Display Question Number: Yes Single Line Question Option: No Option **Orientation**: Vertical The time dependent deformation of a material under an applied load is defined as **Options:** Fatigue Stress 2 Strain 3. Creep Question Number: 97 Question Id: 87111297 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical** For a shaft in torsion, the proportionality constant between torsion and twist per unit length is **Options:** Torsion constant 1. Torsional rigidity 2. Flexural rigidity 3. Bulk modulus of rigidity

(t is the thickness and s is the width)

Options:

- st³
 - $\frac{st^2}{2}$
- st
 - st 3

Question Number: 99 Question Id: 87111299 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The principle of superposition method for analysis of structures is limited to

Options:

- linear systems
- nonlinear systems
- viscoelastic materials

structures undergoing plastic deformation
4.

Question Number: 100 Question Id: 871112100 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The primary instability of a structural element involves

${\bf Options:}$

3.

Local failure

Failure at the edges

The bending of the complete element

Question Number: 101 Question Id: 871112101 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The maximum load the aircraft is expected to experience during its operation is called

Options:

- limit load
- proof load
- ultimate load
- proof factor

Question Number: 102 Question Id: 871112102 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Which type of vibrations are also known as transient vibrations?

Options:

- Torsional vibrations
- Undamped vibrations
- Damped vibrations
- Transverse vibrations

Question Number: 103 Question Id: 871112103 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The deflection of the mid-span point of a simply supported beam, having flexural rigidity EI and length L, subjected to a point force W in the vertical direction is

Options:

Question Number: 104 Question Id: 871112104 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The flexural rigidity of a thin plate in bending is (E is the Young's Modulus, t is the thickness and v is the Poisson's ratio)

Options:

$$\frac{Et^2}{12(1-v^2)}$$

Et

 $12(1-v^2)$

Et2

Question Number: 105 Question Id: 871112105 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical**

The buckling coefficient of a plate simply supported on all edges in compression is that for bending.

Options:

Less than

Greater than PIQPBANK.COM

Equal to

Asymptotically equal to

Question Number: 106 Question Id: 871112106 Display Question Number: Yes Single Line Question Option: No Option **Orientation**: Vertical

For a panel stiffened by longitudinal members in compression, which is the least likely mode of failure?

Options:

The panel between the stringers buckling as plates

The elements of stringers buckling as long plates

The flange attached to panel failing as columns

Question Number: 107 Question Id: 871112107 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The hoop stress of a spherical pressure vessel is _____ that of a cylindrical pressure vessel when the thickness, radius and differential pressure are same.

Options:

2.

3.

4.

- same as
- twice
- , half
- 4 1/4th

Question Number: 108 Question Id: 871112108 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

JPIQPBANK.COM

The specific impulse is related to the effective exhaust velocity as

Options:

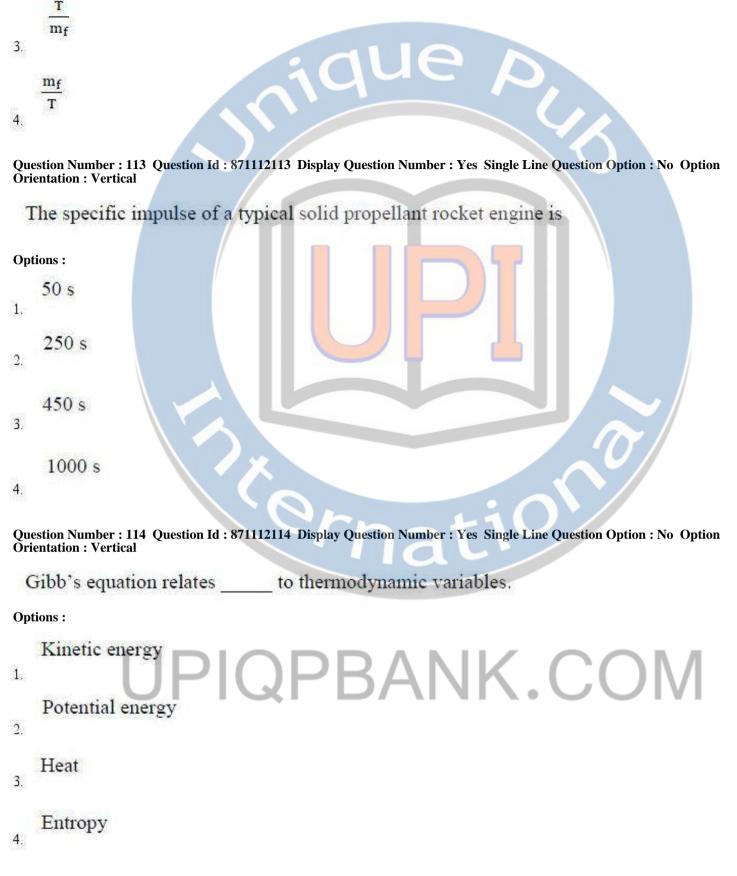
2.

3.

$$C = \frac{I_{sp}}{g_0}$$

$$C = \frac{I_{sp2}}{g_0}$$

$$C = I_{sp}g_0$$


 $C = 2I_{sp}g_0$

Question Number: 109 Question Id: 871112109 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

A optimum performance of a C-D nozzle with high area ratio is at

Ontions ·

independent of altitude
free space 30UC
Question Number: 110 Question Id: 871112110 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
Thermal efficiency of a Brayton cycle with pressure ratio across the compressor.
Options:
Increases linearly
Increases nonlinearly
Decreases 3
Remains constant
Question Number: 111 Question Id: 871112111 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
The maximum value of propulsive efficiency occurs when
Options:
the aircraft flies at its maximum velocity
the engine produces maximum thrust
the exit velocity is twice of the flight velocity 3.
the exit velocity is equal to the flight velocity
Question Number: 112 Question Id: 871112112 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
The Thrust Specific Fuel Consumption (TSFC) is defined as

Question Number: 115 Question Id: 871112115 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

An example of a binder used in solid propellants is

HTPB RDX Question Number: 116 Question Id: 871112116 Display Question Number: Yes Single Line Question Option: No Option **Orientation**: Vertical The combustion taking place in a combustor of a jet engine is typically **Options:** Fuel-rich Fuel-lean Stoichiometric Near stoichiometric proportions Question Number: 117 Question Id: 871112117 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical** The value of γ of the combustion products in a gas turbine engine temperature. **Options:** JPIQPBANK.COM increases 1. decreases 2 decreases and then increases 3. remains constant Question Number: 118 Question Id: 871112118 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Which of the following doesn't contribute to inlet losses in air-breathing engines?

2

2. Shock losses 3. Flow reattachment 4. Question Number: 119 Question Id: 871112119 Display Question Number: Yes Single Line Question Option: No Option **Orientation**: Vertical The isentropic efficiency of a compressor is defined as **Options:** ideal work of compression for given π_c 1. actual work of compression for given π_c 2. ideal work of compression for given me divided by actual work of compression for given π_c actual work of compression for given nc divided by ideal work of compression for given π_c Question Number: 120 Question Id: 871112120 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical** The Leading Edge Advanced Propulsion (LEAP) engine is developed by **Options:** General Electric and Snecma 1. Lockheed and General Electric 2. Northrop Grumman and Rolls Royce 3. Lockheed and Kawasaki 4.

Flow separation